Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biol Interact ; 394: 110977, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548214

RESUMEN

The applications of magnetic nanoparticles (MNPs) as biocatalysts in different biomedical areas have been evolved very recently. One of the main challenges in this field is to design affective MNPs surfaces with catalytically active atomic centres, while producing minimal toxicological side effects on the hosting cell or tissues. MNPs of vanadium spinel ferrite (VFe2O4) are a promising material for mimicking the action of natural enzymes in degrading harmful substrates due to the presence of active V5+ centres. However, the toxicity of this material has not been yet studied in detail enough to grant biomedical safety. In this work, we have extensively measured the structural, compositional, and magnetic properties of a series of VxFe3-xO4 spinel ferrite MNPs to assess the surface composition and oxidation state of V atoms, and also performed systematic and extensive in vitro cytotoxicity and genotoxicity testing required to assess their safety in potential clinical applications. We could establish the presence of V5+ at the particle surface even in water-based colloidal samples at pH 7, as well as different amounts of V2+ and V3+ substitution at the A and B sites of the spinel structure. All samples showed large heating efficiency with Specific Loss Power values up to 400 W/g (H0 = 30 kA/m; f = 700 kHz). Samples analysed for safety in human hepatocellular carcinoma (HepG2) cell line with up to 24h of exposure showed that these MNPs did not induce major genomic abnormalities such as micronuclei, nuclear buds, or nucleoplasmic bridges (MNIs, NBUDs, and NPBs), nor did they cause DNA double-strand breaks (DSBs) or aneugenic effects-types of damage considered most harmful to cellular genetic material. The present study is an essential step towards the use of these type of nanomaterials in any biomedical or clinical application.


Asunto(s)
Compuestos Férricos , Humanos , Compuestos Férricos/química , Compuestos Férricos/toxicidad , Células Hep G2 , Daño del ADN/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Calor , Vanadio/química , Vanadio/toxicidad , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidad , Calefacción , Nanopartículas/química , Nanopartículas/toxicidad
2.
Nanomaterials (Basel) ; 13(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686958

RESUMEN

This study presents an alternative approach to directly synthesizing magnetite nanoparticles (MNPs) in the presence of Vitis vinifera, Vaccinium corymbosum, and Punica granatum derived from natural sources (grapes, blueberries, and pomegranates, respectively). A modified co-precipitation method that combines phytochemical techniques was developed to produce semispherical MNPs that range in size from 7.7 to 8.8 nm and are coated with a ~1.5 nm thick layer of polyphenols. The observed structure, composition, and surface properties of the MNPs@polyphenols demonstrated the dual functionality of the phenolic groups as both reducing agents and capping molecules that are bonding with Fe ions on the surfaces of the MNPs via -OH groups. Magnetic force microscopy images revealed the uniaxial orientation of single magnetic domains (SMDs) associated with the inverse spinel structure of the magnetite (Fe3O4). The samples' inductive heating (H0 = 28.9 kA/m, f = 764 kHz), measured via the specific loss power (SLP) of the samples, yielded values of up to 187.2 W/g and showed the influence of the average particle size. A cell viability assessment was conducted via the MTT and NRu tests to estimate the metabolic and lysosomal activities of the MNPs@polyphenols in K562 (chronic myelogenous leukemia, ATCC) cells.

3.
Nanoscale Adv ; 5(18): 5015-5028, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37705767

RESUMEN

Theoretical and micromagnetic simulation studies of magnetic nanospheres with vortex configurations suggest that such nanostructured materials have technological advantages over conventional nanosystems for applications based on high-power-rate absorption and subsequent emission. However, full experimental evidence of magnetic vortex configurations in spheres of submicrometer size is still lacking. Here, we report the microwave irradiation fabrication of Fe3O4 nanospheres and establish their magnetic vortex configuration based on experimental results, theoretical analysis, and micromagnetic simulations. Detailed magnetic and electrical measurements, together with Mössbauer spectroscopy data, provide evidence of a loss of stoichiometry in vortex nanospheres owing to the presence of a surface oxide layer, defects, and a higher concentration of cation vacancies. The results indicate that the magnetic vortex spin configuration can be established in bulk spherical magnetite materials. This study provides crucial information that can aid the synthesis of magnetic nanospheres with magnetically tailored properties; consequently, they may be promising candidates for future technological applications based on three-dimensional magnetic vortex structures.

5.
Nanotechnology ; 33(33)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35508085

RESUMEN

P-type and n-type metal oxide semiconductors are widely used in the manufacture of gas sensing materials, due to their excellent electronic, electrical and electrocatalytic properties. Hematite (α-Fe2O3) compound has been reported as a promising material for sensing broad types of gases, due to its affordability, good stability and semiconducting properties. In the present work, the efficient and easy-to-implement sol-gel method has been used to synthesizeα-Fe2O3nanoparticles (NPs). The TGA-DSC characterizations of the precursor gel provided information about the phase transformation temperature and the mass percentage of the hematite NPs. X-ray diffraction, transmission electron microscopy and x-ray photoelectron spectroscopy data analyses indicated the formation of two iron oxide phases (hematite and magnetite) when the NPs are subjected to thermal treatment at 400 °C. Meanwhile, only the hematite phase was determined for thermal annealing above 500 °C up to 800 °C. Besides, the crystallite size shows an increasing trend with the thermal annealing and no defined morphology. A clear reduction of surface defects, associated with oxygen vacancies was also evidenced when the annealing temperature was increased, resulting in changes on the electrical properties of hematite NPs. Resistive gas-sensing tests were carried out using hematite NPs + glycerin paste, to detect quaternary ammonium compounds. Room-temperature high sensitivity values (Sr âˆ¼ 4) have been obtained during the detection of ∼1 mM quaternary ammonium compounds vapor. The dependence of the sensitivity on the particle size, the mass ratio of NPs with respect to the organic ligand, changes in the dielectric properties, and the electrical conduction mechanism of gas sensing was discussed.

6.
Langmuir ; 37(3): 1129-1140, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33443443

RESUMEN

The heat produced by magnetic nanoparticles, when they are submitted to a time-varying magnetic field, has been used in many auspicious biotechnological applications. In the search for better performance in terms of the specific power absorption (SPA) index, researchers have studied the influence of the chemical composition, size and dispersion, shape, and exchange stiffness in morphochemical structures. Monodisperse assemblies of magnetic nanoparticles have been produced using elaborate synthetic procedures, where the product is generally dispersed in organic solvents. However, the colloidal stability of these rough dispersions has not received much attention in these studies, hampering experimental determination of the SPA. To investigate the influence of colloidal stability on the heating response of ferrofluids, we produced bimagnetic core@shell NPs chemically composed of a ZnMn mixed ferrite core covered by a maghemite shell. Aqueous ferrofluids were prepared with these samples using the electric double layer (EDL) as a strategy to maintain colloidal stability. By starting from a proper sample, ultrastable concentrated ferrofluids were achieved by both tuning the ion/counterion ratio and controlling the water content. As the colloidal stability mainly depends on the ion configuration on the surface of the magnetic nanoparticles, different levels of nanoparticle clustering are achieved by changing the ionic force and pH of the medium. Thus, the samples were submitted to two procedures of EDL destabilization, which involved dilution with an alkaline solution and a neutral pH viscous medium. The SPA results of all prepared ferrofluid samples show a reduction of up to half the efficiency of the standard sample when the ferrofluids are in a neutral pH or concentrated regime. Such results are explained in terms of magnetic dipolar interactions. Our results point to the importance of ferrofluid colloidal stability in a more reliable experimental determination of the NP heat generation performance.

7.
Cancers (Basel) ; 12(12)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327621

RESUMEN

Most available cancer chemotherapies are based on systemically administered small organic molecules, and only a tiny fraction of the drug reaches the disease site. The approach causes significant side effects and limits the outcome of the therapy. Targeted drug delivery provides an alternative to improve the situation. However, due to the poor release characteristics of the delivery systems, limitations remain. This report presents a new approach to address the challenges using two fundamentally different mechanisms to trigger the release from the liposomal carrier. We use an endogenous disease marker, an enzyme, combined with an externally applied magnetic field, to open the delivery system at the correct time only in the disease site. This site-activated release system is a novel two-switch nanomachine that can be regulated by a cell stress-induced enzyme at the cellular level and be remotely controlled using an applied magnetic field. We tested the concept using sphingomyelin-containing liposomes encapsulated with indocyanine green, fluorescent marker, or the anticancer drug cisplatin. We engineered the liposomes by adding paramagnetic beads to act as a receiver of outside magnetic energy. The developed multifunctional liposomes were characterized in vitro in leakage studies and cell internalization studies. The release system was further studied in vivo in imaging and therapy trials using a squamous cell carcinoma tumor in the mouse as a disease model. In vitro studies showed an increased release of loaded material when stress-related enzyme and magnetic field was applied to the carrier liposomes. The theranostic liposomes were found in tumors, and the improved therapeutic effect was shown in the survival studies.

8.
Nanotechnology ; 32(6): 065703, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33210620

RESUMEN

In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Néel relaxation time in core/shell bimagnetic nanoparticles, for magnetic fluid hyperthermia (MFH) applications. To pursue this goal, Fe3O4/Zn x Co1-x Fe2O4 core/shell nanoparticles were synthesized with 8.5 nm mean core diameter, encapsulated in a shell of ∼1.1 nm of thickness, where the Zn atomic ratio (Zn/(Zn + Co) at%) changes from 33 to 68 at%. The magnetic measurements are consistent with a rigid interface coupling between the core and shell phases, where the effective magnetic anisotropy systematically decreases when the Zn concentration increases, without a significant change of the saturation magnetization. Experiments of MFH of 0.1 wt% of these particles dispersed in water, in Dulbecco modified Eagles minimal essential medium, and a high viscosity butter oil, result in a large specific loss power (SLP), up to 150 W g-1, when the experiments are performed at 571 kHz and 200 Oe. The SLP was optimized adjusting the shell composition, showing a maximum for intermediate Zn concentration. This study shows a way to maximize the heat generation in viscous media like cytosol, for those biomedical applications that require smaller particle sizes.

9.
Adv Biosyst ; 4(10): e2000162, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32924327

RESUMEN

Nanoparticles (NPs) are increasingly being developed as biomedical platforms for drug/nucleic acid delivery and imaging. However, in biological fluids, NPs interact with a wide range of proteins that form a coating known as protein corona. Coronae can critically influence self-interaction and binding of other molecules, which can affect toxicity, promote cell activation, and inhibit general or specific cellular uptake. Glycosaminoglycan (GAG)-binding enhanced transduction (GET) is developed to efficiently deliver a variety of cargoes intracellularly; employing GAG-binding peptides, which promote cell targeting, and cell penetrating peptides (CPPs) which enhance endocytotic cell internalization. Herein, it is demonstrated that GET peptide coatings can mediate sustained intracellular transduction of magnetic NPs (MNPs), even in the presence of serum or plasma. NP colloidal stability, physicochemical properties, toxicity and cellular uptake are investigated. Using label-free snapshot proteomics, time-resolved profiles of human plasma coronas formed on functionalized GET-MNPs demonstrate that coronae quickly form (<1 min), with their composition relatively stable but evolving. Importantly GET-MNPs present a subtly different corona composition to MNPs alone, consistent with GAG-binding activities. Understanding how NPs interact with biological systems and can retain enhanced intracellular transduction will facilitate novel drug delivery approaches for cell-type specific targeting of new nanomaterials.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanopartículas de Magnetita/química , Corona de Proteínas/química , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Células Cultivadas , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Corona de Proteínas/metabolismo
10.
Bioinformatics ; 36(12): 3947-3948, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32221611

RESUMEN

SUMMARY: We have developed a software tool to improve the image quality in focused ion beam-scanning electron microscopy (FIB-SEM) stacks: PolishEM. Based on a Gaussian blur model, it automatically estimates and compensates for the blur affecting each individual image. It also includes correction for artifacts commonly arising in FIB-SEM (e.g. curtaining). PolishEM has been optimized for an efficient processing of huge FIB-SEM stacks on standard computers. AVAILABILITY AND IMPLEMENTATION: PolishEM has been developed in C. GPL source code and binaries for Linux, OSX and Windows are available at http://www.cnb.csic.es/%7ejjfernandez/polishem. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Microscopía , Programas Informáticos , Computadores , Aumento de la Imagen
11.
Pharmaceuticals (Basel) ; 12(2)2019 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-31109098

RESUMEN

Selective vectorization of Cisplatin (CisPt) to Glioblastoma U87 cells was exploited by the fabrication of a hybrid nanocarrier composed of magnetic γ-Fe2O3 nanoparticles and nanographene oxide (NGO). The magnetic component, obtained by annealing magnetite Fe3O4 and characterized by XRD measurements, was combined with NGO sheets prepared via a modified Hummer's method. The morphological and thermogravimetric analysis proved the effective binding of γ-Fe2O3 nanoparticles onto NGO layers. The magnetization measured under magnetic fields up to 7 Tesla at room temperature revealed superparamagnetic-like behavior with a maximum value of MS = 15 emu/g and coercivity HC ≈ 0 Oe within experimental error. The nanohybrid was found to possess high affinity towards CisPt, and a rather slow fractional release profile of 80% after 250 h. Negligible toxicity was observed for empty nanoparticles, while the retainment of CisPt anticancer activity upon loading into the carrier was observed, together with the possibility to spatially control the drug delivery at a target site.

12.
Sci Rep ; 9(1): 3992, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850704

RESUMEN

The Linear Response Theory (LRT) is a widely accepted framework to analyze the power absorption of magnetic nanoparticles for magnetic fluid hyperthermia. Its validity is restricted to low applied fields and/or to highly anisotropic magnetic nanoparticles. Here, we present a systematic experimental analysis and numerical calculations of the specific power absorption for highly anisotropic cobalt ferrite (CoFe2O4) magnetic nanoparticles with different average sizes and in different viscous media. The predominance of Brownian relaxation as the origin of the magnetic losses in these particles is established, and the changes of the Specific Power Absorption (SPA) with the viscosity of the carrier liquid are consistent with the LRT approximation. The impact of viscosity on SPA is relevant for the design of MNPs to heat the intracellular medium during in vitro and in vivo experiments. The combined numerical and experimental analyses presented here shed light on the underlying mechanisms that make highly anisotropic MNPs unsuitable for magnetic hyperthermia.

13.
Nanoscale ; 11(7): 3164-3172, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30520920

RESUMEN

We report a simple and effective way to control the heat generation of a magnetic colloid under alternate magnetic fields by changing the shell composition of bimagnetic core-shell Fe3O4/ZnxCo1-xFe2O4 nanoparticles. The core-shell structure constitutes a magnetically-coupled biphase system, with an effective anisotropy that can be tuned by the substitution of Co2+ by Zn2+ ions in the shell. Magnetic hyperthermia experiments of nanoparticles dispersed in hexane and butter oil showed that the magnetic relaxation is dominated by Brown relaxation mechanism in samples with higher anisotropy (i.e., larger concentration of Co within the shell) yielding high specific power absorption values in low viscosity media as hexane. Increasing the Zn concentration of the shell, diminishes the magnetic anisotropy, which results in a change to a Néel relaxation that dominates the process when the nanoparticles are dispersed in a high-viscosity medium. We demonstrate that tuning the Zn contents at the shell of these exchange-coupled core/shell nanoparticles provides a way to control the magnetic anisotropy without loss of saturation magnetization. This ability is an essential prerequisite for most biomedical applications, where high viscosities and capturing mechanisms are present.

14.
Pharmaceutics ; 11(1)2018 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-30583524

RESUMEN

With the aim to obtain a site-specific doxorubicin (DOX) delivery in neuroblastoma SH-SY5Y cells, we designed an hybrid nanocarrier combining graphene oxide (GO) and magnetic iron oxide nanoparticles (MNPs), acting as core elements, and a curcumin⁻human serum albumin conjugate as functional coating. The nanohybrid, synthesized by redox reaction between the MNPs@GO system and albumin bioconjugate, consisted of MNPs@GO nanosheets homogeneously coated by the bioconjugate as verified by SEM investigations. Drug release experiments showed a pH-responsive behavior with higher release amounts in acidic (45% at pH 5.0) vs. neutral (28% at pH 7.4) environments. Cell internalization studies proved the presence of nanohybrid inside SH-SY5Y cytoplasm. The improved efficacy obtained in viability assays is given by the synergy of functional coating and MNPs constituting the nanohybrids: while curcumin moieties were able to keep low DOX cytotoxicity levels (at concentrations of 0.44⁻0.88 µM), the presence of MNPs allowed remote actuation on the nanohybrid by a magnetic field, increasing the dose delivered at the target site.

15.
Biophys J ; 115(10): 2026-2033, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30473016

RESUMEN

Investigations over half a century have indicated that mechanical forces induce neurite growth, with neurites elongating at a rate of 0.1-0.3 µm h-1 pN-1 when mechanical force exceeds a threshold, with this being identified as 400-1000 pN for neurites of PC12 cells. In this article, we demonstrate that neurite elongation of PC12 cells proceeds at the same previously identified rate on application of mechanical tension of ∼1 pN, which is significantly lower than the force generated in vivo by axons and growth cones. This observation raises the possibility that mechanical tension may act as an endogenous signal used by neurons for promoting neurite elongation.


Asunto(s)
Fenómenos Mecánicos , Neuritas/metabolismo , Animales , Fenómenos Biomecánicos , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Nanopartículas/química , Células PC12 , Ratas
16.
Sci Rep ; 7(1): 8627, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28819156

RESUMEN

We present evidence on the effects of exogenous heating by water bath (WB) and magnetic hyperthermia (MHT) on a glial micro-tumor phantom. To this, magnetic nanoparticles (MNPs) of 30-40 nm were designed to obtain particle sizes for maximum heating efficiency. The specific power absorption (SPA) values (f = 560 kHz, H = 23.9 kA/m) for as prepared colloids (533-605 W/g) dropped to 98-279 W/g in culture medium. The analysis of the intracellular MNPs distribution showed vesicle-trapped MNPs agglomerates spread along the cytoplasm, as well as large (~0.5-0.9 µm) clusters attached to the cell membrane. Immediately after WB and MHT (T = 46 °C for 30 min) the cell viability was ≈70% and, after 4.5 h, decreased to 20-25%, demonstrating that metabolic processes are involved in cell killing. The analysis of the cell structures after MHT revealed a significant damage of the cell membrane that is correlated to the location of MNPs clusters, while local cell damage were less noticeable after WB without MNPs. In spite of the similar thermal effects of WB and MHT on the cell viability, our results suggest that there is an additional mechanism of cell damage related to the presence of MNPs at the intracellular space.


Asunto(s)
Calor , Campos Magnéticos , Nanopartículas de Magnetita/química , Microglía/citología , Animales , Línea Celular , Supervivencia Celular , Coloides/química , Hipertermia Inducida/métodos , Magnetismo , Nanopartículas de Magnetita/ultraestructura , Ratones , Microglía/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Tamaño de la Partícula
17.
Nanomaterials (Basel) ; 7(8)2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28820442

RESUMEN

Aqueous synthesis without ligands of iron oxide nanoparticles (IONPs) with exceptional properties still remains an open issue, because of the challenge to control simultaneously numerous properties of the IONPs in these rigorous settings. To solve this, it is necessary to correlate the synthesis process with their properties, but this correlation is until now not well understood. Here, we study and correlate the structure, crystallinity, morphology, as well as magnetic, relaxometric and heating properties of IONPs obtained for different durations of the hydrothermal treatment that correspond to the different growth stages of IONPs upon initial co-precipitation in aqueous environment without ligands. We find that their properties were different for IONPs with comparable diameters. Specifically, by controlling the growth of IONPs from primary to secondary particles firstly by colloidal and then also by magnetic interactions, we control their crystallinity from monocrystalline to polycrystalline IONPs, respectively. Surface energy minimization in the aqueous environment along with low temperature treatment is used to favor nearly defect-free IONPs featuring superior properties, such as high saturation magnetization, magnetic volume, surface crystallinity, the transversal magnetic resonance imaging (MRI) relaxivity (up to r2 = 1189 mM-1·s-1 and r2/r1 = 195) and specific absorption rate, SAR (up to 1225.1 W·gFe-1).

18.
Drug Deliv ; 24(1): 162-180, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28156178

RESUMEN

Nanotechnology can offer different solutions for enhancing the therapeutic efficiency of polyphenols, a class of natural products widely explored for a potential applicability for the treatment of different diseases including cancer. While possessing interesting anticancer properties, polyphenols suffer from low stability and unfavorable pharmacokinetics, and thus suitable carriers are required when planning a therapeutic protocol. In the present review, an overview of the different strategies based on polymeric materials is presented, with the aim to highlight the strengths and the weaknesses of each approach and offer a platform of ideas for researchers working in the field.


Asunto(s)
Neoplasias/tratamiento farmacológico , Polímeros/química , Polifenoles/administración & dosificación , Polifenoles/química , Animales , Portadores de Fármacos/química , Humanos , Nanopartículas/administración & dosificación , Nanopartículas/química , Nanotecnología/métodos
19.
Adv Healthc Mater ; 6(7)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28156059

RESUMEN

The only clinically approved alternative to autografts for treating large peripheral nerve injuries is the use of synthetic nerve guidance conduits (NGCs), which provide physical guidance to the regenerating stump and limit scar tissue infiltration at the injury site. Several lines of evidence suggest that a potential future strategy is to combine NGCs with cellular or molecular therapies to deliver growth factors that sustain the regeneration process. However, growth factors are expensive and have a very short half-life; thus, the combination approach has not been successful. In the present paper, we proposed the immobilization of growth factors (GFs) on magnetic nanoparticles (MNPs) for the time- and space-controlled release of GFs inside the NGC. We tested the particles in a rat model of a peripheral nerve lesion. Our results revealed that the injection of a cocktail of MNPs functionalized with nerve growth factor (NGF) and with vascular endothelial growth factor (VEGF) strongly accelerate the regeneration process and the recovery of motor function compared to that obtained using the free factors. Additionally, we found that injecting MNPs in the NGC is safe and does not impair the regeneration process, and the MNPs remain in the conduit for weeks.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Factor de Crecimiento Nervioso , Regeneración Nerviosa/efectos de los fármacos , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Nervios Periféricos/fisiología , Factor A de Crecimiento Endotelial Vascular , Animales , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapéutico , Factor de Crecimiento Nervioso/química , Factor de Crecimiento Nervioso/farmacología , Células PC12 , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Ratas , Ratas Sprague-Dawley , Factor A de Crecimiento Endotelial Vascular/química , Factor A de Crecimiento Endotelial Vascular/farmacología
20.
Carbohydr Polym ; 157: 361-370, 2017 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-27987939

RESUMEN

Chitosan nanoparticles (CSNPs) ionically crosslinked with tripolyphosphate salts (TPP) were employed as nanocarriers in combined drug delivery and magnetic hyperthermia (MH) therapy. To that aim, three different ferrofluid concentrations and a constant 5-fluorouracil (5-FU) concentration were efficiently encapsulated to yield magnetic CSNPs with core-shell morphology. In vitro experiments using normal cells, fibroblasts (FHB) and cancer cells, human glioblastoma A-172, showed that CSNPs presented a dose-dependent cytotoxicity and that they were successfully uptaken into both cell lines. The application of a MH treatment in A-172 cells resulted in a cell viability of 67-75% whereas no significant reduction of cell viability was observed for FHB. However, the A-172 cells showed re-growth populations 4h after the application of the MH treatment when CSNPs were loaded only with ferrofluid. Finally, a combined effect of MH and 5-FU release was observed with the application of a second MH treatment for CSNPs exhibiting a lower amount of released 5-FU. This result demonstrates the potential of CSNPs for the improvement of MH therapies.


Asunto(s)
Quitosano/química , Sistemas de Liberación de Medicamentos , Magnetismo , Nanopartículas/química , Línea Celular Tumoral , Fluorouracilo , Humanos , Técnicas In Vitro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...